Next Generation Train Control Systems Design by GE Transportation Italy:

A Universal Vital Platform Approach to meet Current and Future Rail Transportation Signaling Challenges

Giovanni Zanelli Expoferroviaria, Torino 28/3/2012

Mapping Requirements to Design Objectives

LCC Optimization

- Lower Capex
- Reduced maintenance costs
- Better obsolescence management
- Higher reliability and availability

Execution Excellence

- Consistency with specific requirements
- On-time delivery
- Effective migration strategies
- Effective Handholding

Operating Process Efficiency

Improved operational efficiency

Scalability

- •Flexible to changing needs over life cycle
- Upgradability/downgradability

Flexibility

Adaptive architecture

Energy Saving

Contribution to sustainable growth

Security

Avoid signalling system intrusion

Enhanced Customer Experience

- ·Smooth on/off boarding
- •Real time schedule adherence
- Information on journey planning
- Personalized experience

Mapping Requirements to Design Objectives

LCC Optimization

- Lower Capex
- Reduced maintenance costs
- Better obsolescence management
- Higher reliability and availability

Execution Excellence

- Consistency with specific requirements
- On-time delivery
- Effective migration strategies
- Effective Handholding

Operating Process Efficiency

Improved operational efficiency

Scalability

- •Flexible to changing needs over life cycle
- Upgradability/downgradability

Flexibility

Adaptive architecture

Energy Saving

Contribution to sustainable growth

Security

Avoid signalling system intrusion

Enhanced Customer Experience

- ·Smooth on/off boarding
- •Real time schedule adherence
- Information on journey planning
- Personalized experience

Design

Objectives

- Shorter development cycles, less development cycle rerun
- Lower development cost, less modules to sustain
- Flexible HW & SW modular solution
- Less inventory & training – products built with same modules
- Embedded energy optimization functions
- Embedded maintenance and asset management functions

Mapping Requirements to Design Objectives

LCC Optimization

- Lower Capex
- Reduced maintenance costs
- Better obsolescence management
- Higher reliability and availability

Execution Excellence

- Consistency with specific requirements
- On-time delivery
- Effective migration strategies
- Effective Handholding

Operating Process Efficiency

Improved operational efficiency

Scalability

- •Flexible to changing needs over life cycle
- Upgradability/downgradability

Flexibility

Adaptive architecture

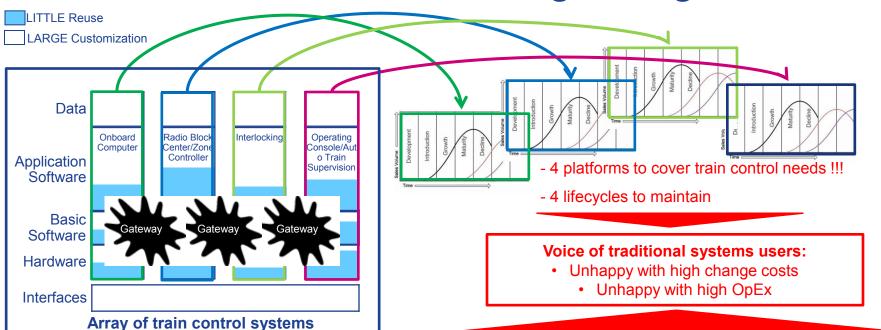
Energy Saving

Contribution to sustainable growth

Security

Avoid signalling system intrusion

Enhanced Customer Experience


- ·Smooth on/off boarding
- •Real time schedule adherence
- Information on journey planning
- Personalized experience

Design Objectives

- Shorter development cycles, less development cycle rerun
- Lower development cost, less modules to sustain
- Flexible HW & SW modular solution
- Less inventory & training – products built with same modules
- Embedded energy optimization functions
- Embedded maintenance and asset management functions

Universal Vita Platform?

Current Cumbersome Rail Signalling Situation

Current Situation

Non optimized "Silo" based implementation

Non integrated set of engineering tools and processes

"Bottom up" step by step approach

Asynchronous Multi Platform R&D investments in multiple "vintages"/branches

Multiple product SW developments, product specific SW

Drawbacks

Non modular products (monolithic): little room for customization, impact of changes difficult to predict

System level, product level, dedicated project execution— not usable at tendering stage

Using and adapting legacy modules...requiring additional equipment – "glue ware" or "gateways" between sub systems

Great inertia and cost to make portfolio evolve Little cross platform development re-use

New generation development increases sustaining cost of large installed base

Project Delta: A Team on a Mission

High Growth Train Control Market Segments and Geographies

Passenger Rail

Conventional - High Speed

Solutions: ETCS/IXL.

Mass Transit

- Metro Light Rail

Solutions: CBTC...

GE Transportation

Differentiated and Integrated Solutions Intelligent

a new generation of train control solutions designed around:

- optimized project execution
- long term LCC effectiveness
- environmental friendliness in mind.

An Imagination Breakthrough Initiative

Open System and Sub-System Architectures **Imagine**

Project Delta: A Team on a Mission

High Growth Train Control Market Segments and Geographies

Passenger Rail

Conventional - High Speed

Solutions: ETCS/IXL.

Mass Transit

- Metro Light Rail

Solutions: CBTC...

GE Transportation

Intelligent

Differentiated and Integrated Solutions

60 M \$US Investment

Delta

100 + people strong team of experts

Two Centres of Excellence:

- Paris La Défense (France)
- **Sesto Fiorentino (Italy)**

Open System and Sub-System Architectures An Imagination Breakthrough Initiative

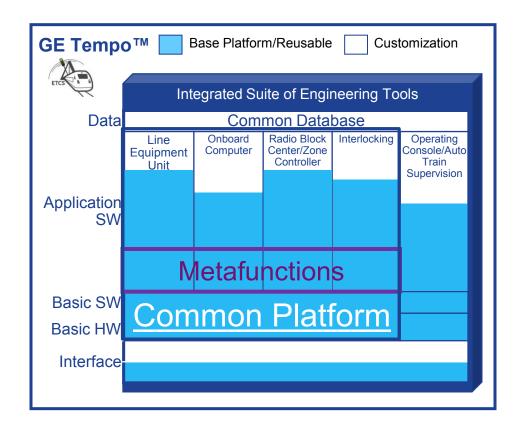
Sesto Fiorentino Office Opening

Promotion of industrial research, transfer of technologies, pre-competition development; valorization of research and innovation

- Creation of a Center of Excellence
- Recruitment of new skilled resources
- Develop the know-how in the region
- Tuscany as a worldwide player in the Railway sector
- Set up laboratories and a showroom
 Activities: Research & Development
 Maximum funding €6.589.496,64

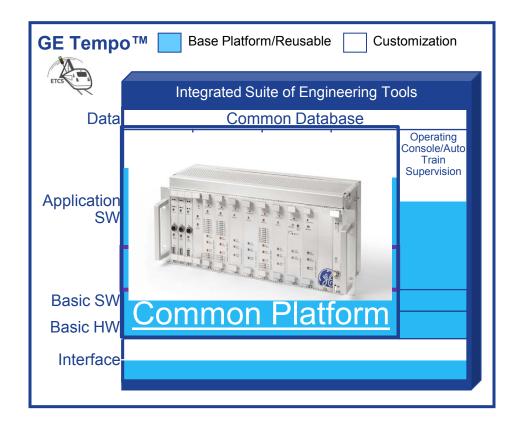
Steps Date

Submission
Contract Signature
Office Opening


26th July 2010 7th Oct 2011 9th June

2011

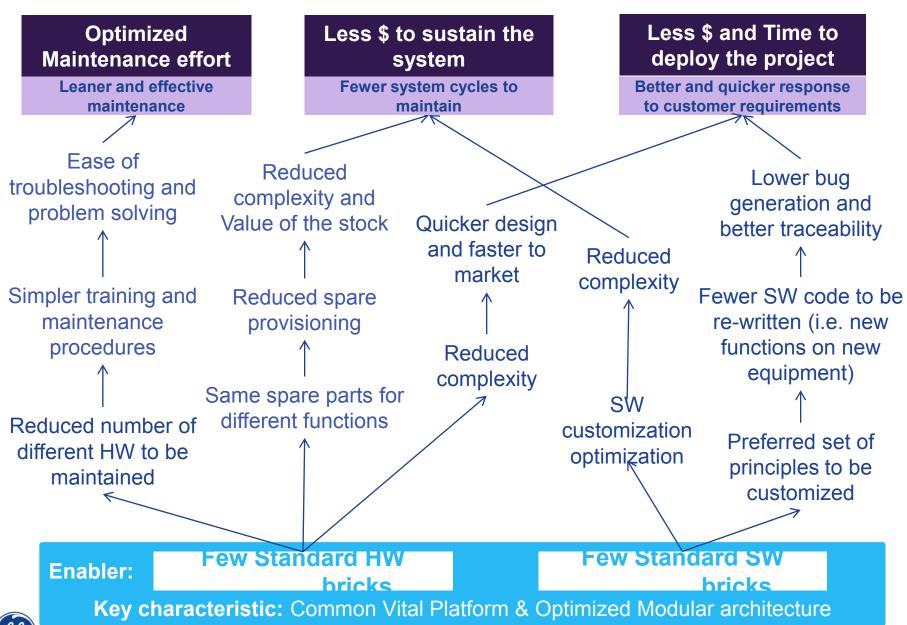
Tempo™ System Architecture A Universal Vital Platform Approach...


One system platform enables:

- standardized and a minimum set of HW/SW bricks
- APIs to application SW
- Flexible application SW using set of SW functional modules
- cross-functional features:Metafunctions
- Integrated end to end tools to manage entire project lifecycle milestones

"Top down" integrated system design capable of supporting all rail transportation control functions without complexity

Tempo™ System Architecture A Universal Vital Platform Approach...


One system platform enables:

- standardized and a minimum set of HW/SW bricks
- APIs to application SW
- Flexible application SW using set of SW functional modules
- cross-functional features:Metafunctions
- Integrated end to end tools to manage entire project lifecycle milestones

"Top down" integrated system design capable of supporting all rail transportation control functions without complexity

The value chains

Conclusions

- Long term LCC effectiveness → Reduced Total Cost of Ownership
- Common platform- Commonality of Hardware: racks, PCBs, I/O cards,
 Using set of SW Functional Modules
 → minimum set of common bricks
- Modular Architecture: flexibility in reuse, ease of interface, ease of standardization
- Taking advantage of State-of-the art <u>integrated tool set</u> through entire project lifecycle
- Environmental friendliness in mind

giovanni.zanelli@ge.com

GE imagination at work