Tecnologie elettriche innovative per i treni merci del futuro

prof. Nicola Bianchi

Department of Industrial Engineering University of Padova 35131 Padova (ITALY) nicola.bianchi@unipd.it

IEMDC 2017, May 21 CIFI - Sezione di Verona

I treni merci lungo i corridoi europei: prospettive 2030

FAULT-TOLERANT SYNCHRONOUS MOTORS

Synchronous PM motors

- Design to limit the impact of fault
- Dual Three-Phase Machine
- Five-Phase Motors
- Power electronic solutions
- Conclusions

OUTLINE OF THE PRESENTATION

- Synchronous PM Motors
- Design to limit the impact of fault
- Dual Three-Phase Motors
- Five-Phase Motors
- Power electronic solutions

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

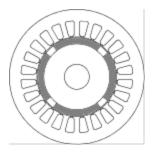
Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Synchronous PM motors

Design to limit the impact of fault

Dual Three-Phase Machine


Five-Phase Motors

Power electronic solutions

Conclusions

The PM motors are distinguished in two classes

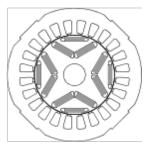
Surface–mounted PM (SPM) motor, whose PMs are mounted on the surface of the rotor.

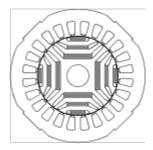
Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions


Conclusions


The PM motors are distinguished in two classes

Interior PM (IPM) motor, whose PMs are buried in the rotor, in proper holes.

Flux barriers canalize the magneticflux.

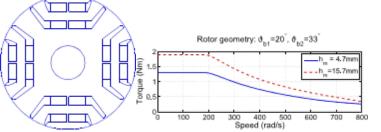
Two torque components: PM torque and reluctance torque.

OMC Locomotive Verona, 17 Novembre 2017

IPM Rotor configurations are suitable to achieve

Constant torque and

Constant power versus speed regions


Synchronous PM motors

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

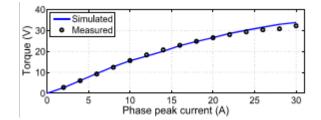
Power electroni solutions

Conclusions

Fractional slot windings exhibit very short end-windings

Design to limit the impact of fault

Dual Three-Phase Machine


Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

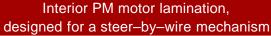
Conclusions

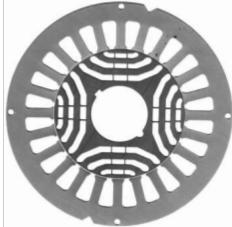
OMC Locomotive Verona, 17 Novembre 2017

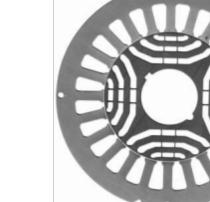
Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors


Power electronic solutions


Conclusions


OMC Locomotive Verona, 17 Novembre 2017

Design to limit the impact of fault

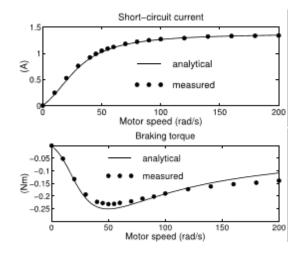
Design to limit the impact of fault

CONTRACT OF The state of the loss

adeva

Design to limit the impact of fault

Dual Three-Phase Machine


Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Short–circuit current and braking torque as a function of the motor speed.

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

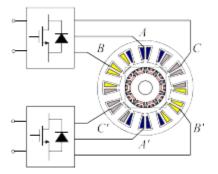
Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Dual Three-Phase Machine

Design to limit the impact of fault


Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

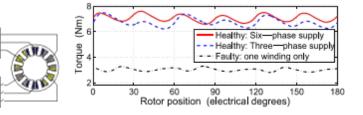
Conclusions

Scheme of the dual three-phase machine drive.

In the event of a fault:

one of the two three–phase systems is disconnected the machine is operated by healthy three–phase system.

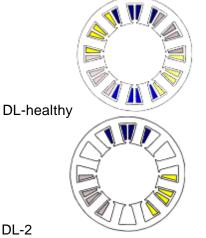
Synchronous PM motors

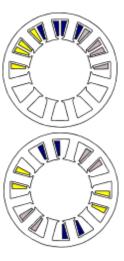

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions


Conclusions



Measured torque behaviors under healthy and open circuit faulty conditions.

Dual Three-Phase Machine

DL-1

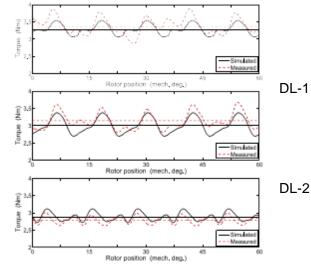
OMC Locomotive Verona, 17 Novembre 2017

DL-2

OMC Locomotive Verona, 17 Novembre 2017

Synchronous PM motors

Design to lim the impact of fault


Dual Three-Phase Machine

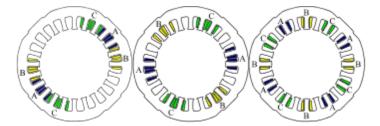
Five-Phase Motors

Power electronic solutions

Conclusions

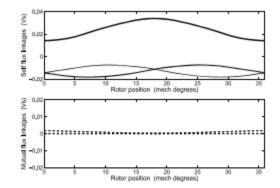
IPM machine: simulated and measured torque versus rotor position with various double–layer winding arrangements.

Design to limit the impact of fault


Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

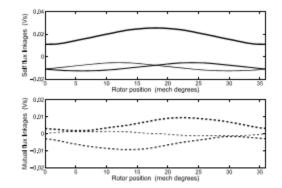

Conclusions

Symmetric 24-slot 20-pole configurations.

Flux linkages versus rotor position with DL–1 double–layer winding arrangement

Synchronous PM motors

Design to limit the impact of fault


Dual Three-Phase Machine

Five-Phase Motors

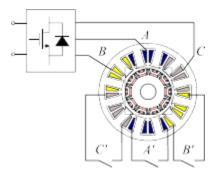
Power electronic solutions

Flux linkages versus rotor position with DL–3 double–layer winding arrangement.

Synchronous PM motors

Design to limit the impact of fault

Dual Three-Phase Machine


Five-Phase Motors

Power electronic solutions

Test layout for testing the machine capability with a single phase or a complete three–phase winding short–circuited.

Synchronous PM motors

Design to limit the impact of fault

Dual Three-Phase Machine

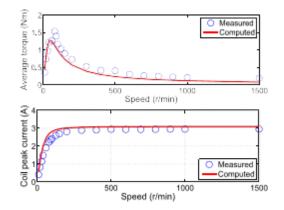
Five-Phase Motors

Power electronic solutions

Design to limit the impact of fault

Dual Three-Phase Machine

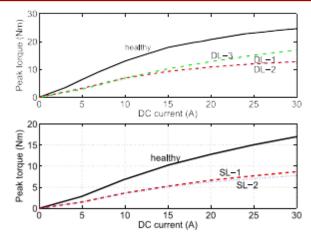
Five-Phase Motors


Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

(a) Measured braking torque and


versus speed with dragged rotor and all coils

OMC Locomotive Verona, 17 Novembre 2017

Measured torque versus current with (a) single–layer winding corfigurations and (b) single–layer winding corfigurations — DC current supply and dragged rotor —

Synchronous PM motors

Design to limi the impact o fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

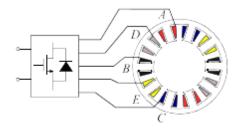
Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Five-Phase Motors

Design to limit the impact of fault


Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

Scheme of the five --phase motor drive.

Five-phase PM prototype: photo of the (a) stator and (b)

Synchronous PM motors

Design to limit the impact of fault

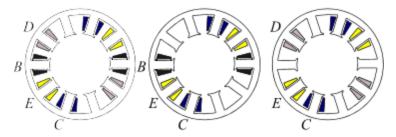
Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

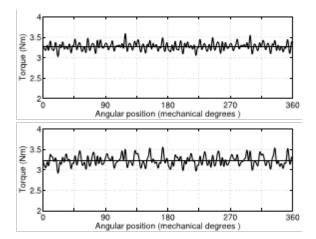
Design to limit the impact of fault

Dual Three-Phase Machine


Five-Phase Motors

Power electronic solutions

Conclusions


Five-phase PM motor: examples of the loss of one or two

(b): two adjacent phases open circuit;(c): two non adjacent phases open circuit.

Measured torque behaviours in afive –phase PM motor with open circuit of **two non-adjacent** phases. (a) half–bridge converter; (b) full–bridge converter.

Synchronous PM motors

Design to limi the impact o fault

Dual Three-Phase Machine

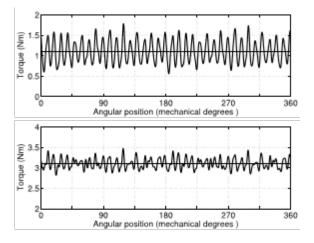
Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Measured torque behaviours in afive –phase PM motor with open circuit of two adjacent phases.
(a) half–bridge converter; (b) full–bridge converter.


Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

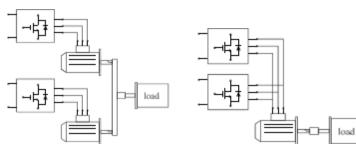
OMC Locomotive Verona, 17 Novembre 2017

Power electronic solutions

Design to limi the impact o fault

Dual Three-Phase Machine

Five-Phase Motors


Power electronic solutions

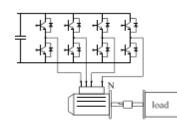
Conclusions

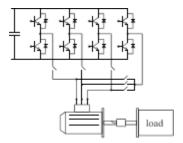
OMC Locomotive Verona, 17 Novembre 2017

Complete and partial redundancy: all components of the electrical motor drive are

inverter is doubled, while only one PM motor is

To reduce costs, only a part of the inverter is redundant: with neutral point connection with redundant leg


Synchronous PM motors

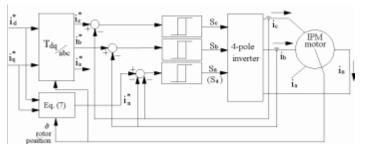

Design to limi the impact o fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Inverter with neutral point connection


Synchronous PM motors

Design to limi the impact o fault

Dual Three-Phase Machine

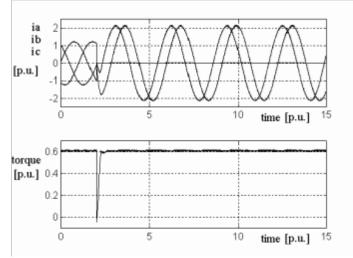
Five-Phase Motors

Power electronic solutions

OMC Locomotive Verona, 17 Novembre 2017

Synchronous PM motors

Design to limit the impact of fault


Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

Inverter with neutral point connection

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

Electric motor configurations exist suitable to:

- to limit the fault rise up,
- to limit the impact of a fault,
- to resist a fault event,
- to operate in coexistence with a fault,

Design to limit the impact of fault

Dual Three-Phase Machine

Five-Phase Motors

Power electronic solutions

Conclusions

OMC Locomotive Verona, 17 Novembre 2017

Thank you for the attention.