Next Generation Train Control Systems Design by GE Transportation Italy:
A Universal Vital Platform Approach to meet Current and Future Rail Transportation Signaling Challenges

Giovanni Zanelli
Expoferroviaria, Torino 28/3/2012
Mapping Requirements to Design Objectives

<table>
<thead>
<tr>
<th>Category</th>
<th>Objectives</th>
</tr>
</thead>
</table>
| LCC Optimization | • Lower Capex
 • Reduced maintenance costs
 • Better obsolescence management
 • Higher reliability and availability |
| Execution Excellence | • Consistency with specific requirements
 • On-time delivery
 • Effective migration strategies
 • Effective Handholding |
| Operating Process Efficiency | • Improved operational efficiency |
| Scalability | • Flexible to changing needs over life cycle
 • Upgradability/downgradability |
| Flexibility | • Adaptive architecture |
| Energy Saving | • Contribution to sustainable growth |
| Security | • Avoid signalling system intrusion |
| Enhanced Customer Experience | • Smooth on/off boarding
 • Real time schedule adherence
 • Information on journey planning
 • Personalized experience |
Mapping Requirements to Design Objectives

LCC Optimization
- Lower Capex
- Reduced maintenance costs
- Better obsolescence management
- Higher reliability and availability

Execution Excellence
- Consistency with specific requirements
- On-time delivery
- Effective migration strategies
- Effective Handholding

Operating Process Efficiency
- Improved operational efficiency

Scalability
- Flexible to changing needs over life cycle
- Upgradability/downgradability

Flexibility
- Adaptive architecture

Energy Saving
- Contribution to sustainable growth

Security
- Avoid signalling system intrusion

Enhanced Customer Experience
- Smooth on/off boarding
- Real time schedule adherence
- Information on journey planning
- Personalized experience

- Shorter development cycles, less development cycle re-run
- Lower development cost, less modules to sustain
- Flexible – HW & SW modular solution
- Less inventory & training – products built with same modules
- Embedded energy optimization functions
- Embedded maintenance and asset management functions
Mapping Requirements to Design Objectives

LCC Optimization
- Lower Capex
- Reduced maintenance costs
- Better obsolescence management
- Higher reliability and availability

Execution Excellence
- Consistency with specific requirements
- On-time delivery
- Effective migration strategies
- Effective Handholding

Operating Process Efficiency
- Improved operational efficiency

Scalability
- Flexible to changing needs over life cycle
- Upgradability/downgradability

Flexibility
- Adaptive architecture

Energy Saving
- Contribution to sustainable growth

Security
- Avoid signalling system intrusion

Enhanced Customer Experience
- Smooth on/off boarding
- Real time schedule adherence
- Information on journey planning
- Personalized experience

- Shorter development cycles, less development cycle re-run
- Lower development cost, less modules to sustain
- Flexible – HW & SW modular solution
- Less inventory & training – products built with same modules
- Embedded energy optimization functions
- Embedded maintenance and asset management functions
Current Cumbersome Rail Signalling Situation

Data
Application Software
Basic Software
Hardware
Interfaces

Array of train control systems

- 4 platforms to cover train control needs !!!
- 4 lifecycles to maintain

Voice of traditional systems users:
• Unhappy with high change costs
• Unhappy with high OpEx

Current Situation
Non optimized “Silo” based implementation
Non integrated set of engineering tools and processes
“Bottom up” step by step approach
Asynchronous Multi Platform R&D investments in multiple “vintages”/branches
Multiple product SW developments, product specific SW

Drawbacks
Non modular products (monolithic): little room for customization, impact of changes difficult to predict
System level, product level, dedicated project execution – not usable at tendering stage
Using and adapting legacy modules…requiring additional equipment – “glue ware” or “gateways” between sub systems
Great inertia and cost to make portfolio evolve
Little cross platform development re-use
New generation development increases sustaining cost of large installed base
Project Delta: A Team on a Mission

High Growth Train Control Market Segments and Geographies

Passenger Rail
- Conventional
- High Speed

Solutions: ETCS/IXL…

Mass Transit
- Metro
- Light Rail

Solutions: CBTC…

GE Tempo™

GE Transportation

Intelligent Control Systems

Imagine a new generation of train control solutions designed around:
- optimized project execution
- long term LCC effectiveness
- environmental friendliness in mind.

An Imagination Breakthrough Initiative
Project Delta: A Team on a Mission

High Growth Train Control Market Segments and Geographies

- **Passenger Rail**
 - Conventional
 - High Speed
 Solutions: ETCS/IXL...

- **Mass Transit**
 - Metro
 - Light Rail
 Solutions: CBTC...

GE Tempo™

GE Transportation

Intelligent Control Systems

60 M $US Investment

100 + people strong team of experts

Two Centres of Excellence:
- Paris La Défense (France)
- Sesto Fiorentino (Italy)

An Imagination Breakthrough Initiative
Sesto Fiorentino Office Opening

Promotion of industrial research, transfer of technologies, pre-competition development; valorization of research and innovation

- Creation of a Center of Excellence
- Recruitment of new skilled resources
- Develop the know-how in the region
- Tuscany as a worldwide player in the Railway sector
- Set up laboratories and a showroom

Activities: Research & Development

Maximum funding €6,589,496.64

Steps

- Submission
- Contract Signature
- Office Opening

Date

- 26th July 2010
- 7th Oct 2011
- 9th June 2011
Tempo™ System Architecture
A Universal Vital Platform Approach…

One system platform enables:
- standardized and a minimum set of HW/SW bricks
- APIs to application SW
- Flexible application SW using set of SW functional modules
- cross-functional features: Metafunctions
- Integrated end to end tools to manage entire project lifecycle milestones

“Top down” integrated system design capable of supporting all rail transportation control functions without complexity
Tempo™ System Architecture
A Universal Vital Platform Approach...

One system platform enables:
- standardized and a minimum set of HW/SW bricks
- APIs to application SW
- Flexible application SW using set of SW functional modules
- cross-functional features: Metafunctions
- Integrated end to end tools to manage entire project lifecycle milestones

“Top down” integrated system design capable of supporting all rail transportation control functions without complexity
The value chains

Key characteristic: Common Vital Platform & Optimized Modular architecture

- **Optimized Maintenance effort**
 - Leaner and effective maintenance
 - Ease of troubleshooting and problem solving
 - Simpler training and maintenance procedures
 - Reduced number of different HW to be maintained

- **Less $ to sustain the system**
 - Fewer system cycles to maintain
 - Reduced complexity and Value of the stock
 - Reduced spare provisioning
 - Same spare parts for different functions

- **Less $ and Time to deploy the project**
 - Fewer SW code to be re-written (i.e. new functions on new equipment)
 - Lower bug generation and better traceability
 - Preferred set of principles to be customized

Enabler: Few Standard HW bricks

Few Standard SW bricks

FOR DISCUSSION PURPOSES ONLY
Expoferroviaria
28 March 2012
Conclusions

• Long term LCC effectiveness → Reduced Total Cost of Ownership

• Common platform - Commonality of Hardware: racks, PCBs, I/O cards,
 - Using set of SW Functional Modules
 → minimum set of common bricks

• Modular Architecture: flexibility in reuse, ease of interface, ease of standardization

• Taking advantage of State-of-the art integrated tool set through entire project lifecycle

• Environmental friendliness in mind